首页> 外文OA文献 >Fundamental aspects of steady-state conversion of heat to work at the nanoscale
【2h】

Fundamental aspects of steady-state conversion of heat to work at the nanoscale

机译:稳态转换为纳米尺度的热量的基本方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?
机译:近年来,纳米技术重新激发了热能转化为热能的研究。稳态器件通过微观粒子(例如电子,光子,声子等)的稳态流进行无任何宏观运动部分的转换。本文旨在介绍用于描述这些稳态流的一些理论。各种介观或纳米级系统。这些理论是在理想的机器中引入的,这些机器将热量转换为电能(热力发动机)或将电能转换为热量(制冷机)。从这个意义上讲,这些机器可以归类为热电,尽管当热源是太阳时,这应该理解为包括光伏。由于量子力学对于大多数此类机器很重要,因此它们属于量子热力学领域。在许多情况下,我们考虑的机器具有很少的自由度,但是它们所相互作用的热量和功的储量被认为是宏观的。这篇综述讨论了不同的理论,这些理论可以考虑介观和纳米尺度物理学的不同方面,例如相干量子传输,磁场感应效应(包括诸如量子霍尔效应的拓扑学效应)和单电子充电效应。它讨论了热电转换的效率以及热电性能。更具体地讲,所提出的理论是(i)带有或不带有磁场的线性响应理论;(ii)线性响应范围内且远离平衡的Landauer散射理论;(iii)线性响应内强相互作用系统的Green-Kubo公式(iv)具有或不具有相互作用效应的小型量子机器的速率方程分析,(v)波动小型系统的随机热力学。在所有情况下,我们都特别强调有关理想机器界限的基本问题。磁场可以改变功率或效率的界限吗?传输的量子理论与热力学定律之间有什么关系?量子力学是否将经典系统的热力学所不具备的基本原理置于热-功转换上?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号